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was found. Taking the second of the xesonance relations (v= p= 2), as the fundamental reson- 

ance, we obtain iPlj = 3>1, But this means that the case of interaction considered here 

satisfies al-1 the conditions of Theorem 3; therefore the libration points shown are unstable. 
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SMALL ~IBRA~rON~ OF ONE-~~MEN~rONAL ~~~N~ BODIES* 

V.V. POPOV 

Problems of the transverse vibrations of moving strings, hoses with flowing 
liquid, as well as bodies that can be represented in the form of a set of 
interacting strings moving at different velocities are examined. It is 
assumed that there are not tangential stresses between the strings. The 
vibrations are described by a second-order linear differential equation 
whose coefficients are obtained by summing the corresponding parameters of 
the separate strings. The distinctive feature of this kind of system is 
the difference in the wave propagation velocities in the forward and 
reverse directions. 

A transformation is presented that enables the problem of vibrational 
processes in a moving body with conditions given on fixed boundaries to be 
xeduced to a boundary value problem for a string at rest. Questions 
concerning the critical velocities , the free vibration energy of the 
maving body, and the type of dissipative term are considered. Analytic 
solutions are given for problems regardfng free vibrations and the steady- 
state regime of forced vibrations under the action of a farce varying 
sinusoidally with time. 

1. Fomulation of the problem.. In a linear approximation we will considex the 
transverse vibrations of a body (or system of bodies) moving uniformly and rectilinearly along 
the x axis in the ground state. In the simplest case, the equation of a taut filament (string) 
moving at a velocity t is obtained from the equations of the string at rest 

P&t - Tzz*= F fl.1) 

(the notation is standard) by replacing the partial desivative with respect to the time &f& 
by the substantive derivative d!dt + ud:'dx 

*Prikl.Matwn.Mekhan..49,L,78-84,1985 
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or 

ut: + zw, -t (v* - co*) uxx = f, c,,’ = Tip, f = F/p (1.3) 

Problems of the vibrations of bodies comprised of two filaments, strings with a moving 
distributed inertial load, and a hose, a stretched flexible pipe with a flowing ideal fluid 
/l, 2/, are examined on the same mathematical basis. The fluid is here considered to be 
either an inertial laod, or the pressure drop is also taken into account, which is equivalent 
to the appearance of negative tension. It is assumed that there are no tangential stresses 
between the strings. 

The equations for the combined vibrations of such a system can be obtained as follows. 
We denote the force acting on the first string by the second by F Ilr 
F 

we similarly introduce 
21, we also furnish the variables in (1.2) with the subscripts 1 and 2. 

and using the equation FL2 = -Fzl. we obtain 
Taking y = ll2 = Ur 

(P1 + P*) U/f i 2 (~1% + PGZ) ufz -t (PIv~' + P~v~' - T, - j",) n, = 0 (1.4) 

If the wall of the hose is considered to be fixed, v, =i 0 and the pressure drop (in a 
finite interval) is denoted by n, we obtain the equation normally used in practice 

(~1 -t P,) U/I + ~P~vL(, + (p,vr' - T, + n) nxx = 0 (1.5) 

We have similarly for n strings under the conditions Fjj; = --F,j : 

An infinite set of strings can formally be considered, and the sum can be replaced by 
an integral over a segment or a two-dimensional domain 

R = j p @) dU, P = .i p (SC) u (CL) d% K = s P (u) V* (a) dcl 

EI = i T (c)da 

In particular, taking into account the dispersion in the velocities in a flowing fluid 
we obtain an equation for the hose (<. . .> is the mean value) 

(~1 i ~2) ufil + 2~1 <u> t+x + (~1 <v2> - T,) u,, = 0 

In fact, we can speak of an approximate description of the vibrations of a two- or three- 
dimensional body in these models , whose transverse dimensions are small compared with the 
longitudinal dimensions as well as with the wavelength. The body is represented as a set of 
strings, where the parameters of the separate strings enter the appropriate body parameters 
- the coefficients of (1.6) - additively. 

Consider the following example. Suppose we have a layer -h <y <k of an ideal incom- 
pressible fluid of density p flowing with velocity u in the direction of the x axis. The 
layer is bounded by two membranes. For y = h the membrane is of density p1 with tension T, 
moving at a velocity u1 while the parameters of the second membrane for Y = --h will be 

~$9 T,, VI , respectively. . We will examine the problem of small system vibrations in the zy 
plane. In this case it is also possible to speak about the vibrations of two strings inter- 
acting with an infinite set of liquid filaments. If there are no external forces, the fluid 
flow will be potential and the problem can be solved by methods described in /3/. The poten- 
tial cp will satisfy the equation Av = 0. 

Denoting the membrane deflections by U, and u#, we have the kinematic conditions on the 

lines Y=I 1 h (there is slip on the fluid and membrane boundaries) 

The pressure in the fluid can be expressed in terms of the potential by the formula 

The dynamic conditions on the boundaries, the balance of Pressure and forces-acting from 

the membrane side, have the form 
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We shall seek the solution of the problem in the form 

where 0 is the frequency , and x is the wave number. We then obtain equations for the 

amplitudies from (1.7) and (1.81 

i&,(o+xv)=x(Achxh+Bshxh) (1.10) 

ibp (w + XV) = x (A chxh - B shxh) 
- ip (0 + XV) (A sh xh -j- B ch xh) - x*Txb, -k PI (0 -I- 

wp, = 0 

T& condition for a non-zero solution of the system to existr the dispersion equation, 
has the form 

(1.11) 

Por small x Eq.tl.11) can be simplified. Since the phase velocity of the wave c= o/x 
is a finite quantity, it is convenient to ascribe a first order of smallness in o to x. 
Using the relationship tanh xh exxhand also taking into account that the second and third 
components in the second and fourth square brackets have a higher order of smallness than the 
first, we obtain approximately 

Equating the expression in square brackets to zero, we obtain 

(2Ph + PI -f PA Ma + 2 &hu + PlQ -t PlU1 + p*v,)xo t 

(2phv? + p1v12 Jr pzvn2 - T, - T,) xz = 0 

(1.12) 

which is equivalent to (1.6) for a given specific system when taking account of (1,9f. 
Since the wave velocity is independent of its length in this approximation, the system 

can be described by a one-dimensional second-order equation. It is seen that a system of n 
membranes separated by n-- 1 fluid layers possesses the same properties. Longitudinal 
motions of parts of such a System merely result in different "forward"and "backward" wave 
propagation velocities, to a first approximation. 

It is convenient to study the form of the next approximation in a rather simpler example: 
one membrane and fluid layer fp2= Tz= 0). Then we have instead of (1.111 

p (w + XU)%h 2x/C -+ xp, (0 -t_ xv# - T,X3 = 0 

Expanding tanh 2xh in series, we obtain the next approximation after (1.12) including 
fourth-order terns. A one-dimensional differential equation of the same order describing the 
dispersion effects corresponds to it. Higher approximations can also be considered, 

A characteristic property of vibrational systems described by (1.6) is their asymmetry, 
as expressed in the different wave velocities in the forward and backward directions. If the 
solution of (1.61 is taken in the form 

U = f, (1: - Cl4 + II (5 + cot) (1.133 

we obtain expressions cl and c, 

cl,2 = (9-P t I’-P” - R (K - 3))iR -. 

ft is assumed that P2-R (K - 8); 0, i.e., the hyperbolicity of 11,61. For moving 
strings %a = cai 0, where (1.3) remains hyperbolic for all u. 

For the hose model (1.5) (we set n =O) it is customary to speak about two critical 

flud flow velocities. FQ~ the first critical velocity V, = J/?& the coefficient of u,, 
vanishes and an infinite set of equilibrium modes U = tp (z) appears, where Q is an arbitrary 
function. For u> u+ 

U** = (1 + PJPlJ 1'T,lp, 
The terminology can be 

Cl > CI# where c* = 0 
the waves mOve in just 
second critical value. 

The wave equation 

we sepak about post-critical motions. The second critical value 

corresponds to the passage from a hyperbolic to an elliptic equation. 
retained for the general case. It can always be assumed that E~>O, 
corresponds to the first critical value. 

one direction for c,(O. 
In the post-critical case, 

The equation cpm -cl corresponds to the 

having the general solution (1.13) can be written in the form 
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utt + (Cl - 4 utx - ClCSU,, = 0 (1.14) 

We will consider mainly the first boundary value problem for it, with the following 
conditions on fixed boundaries: 

11 (t, 0) = II (t, I) = 0 (1.15) 

Keeping the problem of forced vibrations in mind, 
equation 

we also introduce the inhomogeneous 

Utt -t (c1 - c*) utr - clcl~zx = f 0, 4 (1.16) 

2. Free vibrations. To solve the boundary value problems, it is convenient to 
transform (1.16) into a wave equation of the form (1.1) by keeping the segment [O,i] fixed. 
This can be done by selecting the new variables for c,#O in the form 

E = 2, 'I = t + ys, y = (Cl - cp)/2c1c2 (2.1) 

Equation (1.16) becomes 

UT, - a2ugE=II, fl=*fb-Y%,%) (2.2) 

In this case the wave velocities will equal _+a, where a = 2&(c, + c,). For moving 
strings /4/ y = u/(c,~ - u*) and a = c0 (1 - u2/co2). 

A solution of the Cauchy problem can be constructed for (1.14) under the conditions 

n (0, 2) = 'p (z), u1 (0, s) = 'II, (5) (2.3) 

by appliDg the D'Alembert method directly to this equation 

G')==* [ 

x+r,i 

Cl(F(5 + czt) + czcr (s--1t) f 
s 9(y)& X-Q 

Considering the free vibrations problem in a finite interval with conditions (1.151, it 
is convenient to start from the solution of the corresponding problem for (2.2) 

w 

u (T, %)= Re 
c 

D, sinn&e'@k'l, Xk=+, ok= ax, 
k=l 

(2.4) 

where Re is the symbol for the real part, Dk =Dk' - iDk” are arbitrary constants, and o,, 
are the eigenfrequencies. Applying the transformation (2.1) to (2.4) we obtain 

As we approach 
For a moving String 

Underlying the 

u (t,~) = x [Dk’ coswk (t + ys) + D,"siri wh. (t "i_ ys)]sin xBr 
h=1 

2CS2 

the first critical value W,; -+ 0 and as we approach 
Ok = (1 - U%,~)C,Xk. 

(2.5) 

the second o,;- -m. 

similarly between moving body vibrations and fixed string vibrations noted 
in the literature namely the reality of the eigenfrequencies; where the eigenfrequencies are 
"dynamic modes" representable as the sum of two travelling waves and passing to the limit 
v - 0 (Cl - Cl) in the natural vibrations of a fixed string, are the properties of the trans- 

formation (2.1) that transfers the elementary solutions of the wave equation sinxk&'UhT into 
the solution of (1.3) and (1.5) keeping the values of ok unchanged. 

If the initial 'conditions' 
from the system 

are given for t = --yx, the coefficients Dr will be determined 

m! 
v1(r)= a (- 'Jr, X) = kz, Dk’ Sin X&X 

m 

$1 (.I’) = u, (- yr, X) = x k@k’Sin x,:X 
k=L 

from the usual formulas 

If the conditions are given for t=*O, then Dk must be determined by using expansions 
in a non-orthogonal system of functions 
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cp (2) = u (0,~) = k$l [& cos ok-p + D,” sin wkyt] sin xkz 

We examine the question of the energy of free vibrations. For F=O and conditions 

(1.51, the equationfor the vibrations of a moving string (1.2) can be obtained by varying 
the functional J = J&& with the Lagrange functions 

L=fj.[p(U,$uU.)z--TUII]dr 
0 

It is natural to determine the vibration energy from the formula E = @L/& - L, 
which yields 

E = + p j [u,2 + (cc? - v*) l&2] dx 
0 

Similarly for (1.14) in a calcilation per unit density 

The energy is positive-definite for the subcritical velocities. It is easy to verify 
that the energy density (ut* + c,c,uX2)/2 and its flux, given by the expression (cl - ct) u1*/2 - 
Vs"ru,, satisfy the equation of continuity. Under conditions (1.15) the energy flux on the 
section boundaries equals zero, the system is closed, and its energy is conserved. 

3. Forced Vibrations. Steady-state mode problems play a major role in the analysis 
of forced vibrations. For a fixed string it is obtained as the limit as t--tot for the 
solution of an equation with the dissipative term vu,,v>o 

u,, + vu, - co*urx = f (3.1) 

where v tends to zero in the solution obtained. We obtain the vibrations equation for a 
moving string from (3.1) by the same replacement of the time derivative with respect to time 
by the substantive derivative, which is used to obtain (1.2) from (1.1) 

(3.2) 

The dissipative term is also introduced in /5/ as the product of a positive constant 
and the substantive derivative, where vibrations of a chain transmission are investigated due 
to the effect of perturbations moving from the boundary. The solution of (3.2) obtained in 
/5/ yields a decrease in the amplitude of the resonance vibrations as the chain velocity 
increases, which agrees with experiment while theory predicts an increase in the amplitude for 
the equation with the term vu,. Transforming (3.2) to the variables 'I, E we obtain 

k + v Iu, + v (1 - V"/Co") UJ - a*l+t = (1 - I.%,‘) f 

The dissipative term for (1.16) can be taken in the form v (u, + (cl - cl) u.J2) and the 
transformed equation will be 

When f =f, = 0 the initial perturbations on the final segment damp out for the mentioned 
selection of the dissipative term for all, including the post-critical, modes of motion. 

Consider the problem of the steady vibrations of a moving body subjected to a force 
varying sinusoidally with time by taking the same problem for a fixed string /6/ as the initial 
problem 

usr - a2uLE = f. (f) eior, 24 (a-, 0) = u (7, 1) = 0 (3.3) 

In the non-resonance case the solution has the form u = (/(5)&T, where 

foWsinx(5-yY)dy--_ 
5 s fo (Y) sin x (E - Y) dy 

0 cl 
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If the force f =f* (z)@ is taken in (1.16), then after 

r, 5 we will have 

f. (f) = 4c&, + d-' fr @-'"YE 

Taking (3.4) into account , we will write the solution of 

going over to the variables 

(3.4) 

the problem in the form 

5 

$ !*(~)e-l"vl,sinx(.r- y)dy)e'w('+~X) 
E 
0 

It can be concluded from this expression that near the first critical value of the 
velocity the amplitude of forced vibrations will decrease; U--+0 as c* + 0. However, 
X-+~ here and there is some doubt about the applicability of the one-dimensional approach 
(the influence of small stiffness on the string vibration for I' =cO is studied in /7/j. The 
amplitude tends to infinity as one approaches the second critical value 

We will now examine the resonance case Q = 0, = tma’l. 
(c* - -c1) f 

If f. (Q is orthogonal to the 
n-th eigenfunction, i.e., 

S f0 64) sin wdy = 0 

then the solution of problem (3.3) will be 

The solution of problem (15, 16) is obtained after substituting (2.1) and (3.4)into 
this formula. It follows from the orthogonality condition that in this case f, (x) is re- 
presentable in the form 

1, (4 = e’-onvxhT CR sin xlrr 
v 

Ck are complex constants. In particular, the expression f* = fS(z-zo) holds for a point 
force, where so is the zero of the function, and sinnnzll is the same result as for a fixed 
string. 

In the absence of orthogonality the solution of the problem (we present only the growing 
term) is obtained from the solution of the equation 

I 

~,,-a~u~~=A,sinx,Ee'On~, A,, =t fo(y) sinx,,ydy 
s 
0 

and has the form 

In conclusion, we note that the main results of this work can be extended formally into 
the post-critical case. At the same time it is difficult to give a physical interpretation 
of the solution of boundary value problems in the absence of waves reflected from the bound- 
aries. It is also not clear to what degree one-dimensional models can generally be used to 
describe post-critical vibrations. In this connection, the inadequate experimental study 
of the vibrations of bodies moving at velocities comparable to and even more so, exceeding 
the velocity of wave propagation should be mentioned. 
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THE DYNAMICS OF THE COLLISION BETWEEN A RIGID BODY AND 
A FLEXIBLE STRING AND MEMBRANE* 

S.S. GRIGORIAN and SH. M. MDTALLIMOV 

An exact analysis of the boundary conditions at the point where an element 
of an absolutely flexible string or membrane meets the surface of a rigid 
body colliding with it as the "supersonic" velocity of the rigid body, 
the formulation of the problem concerning such a collision, accompanied 
by the tearing of the string of the rupture of the membrane, and the 
construction of its solution for the selfsimilar impact mode with constant 

velocity are given. 
The principles of the mathematical theory for the OOlliSiOn Of a 

solid with flexible structures in the form of strings or membranes were 
laid by Rakhmatullin /l/. A number of interesting results were obtained, 
but certain questions of the theory have not been clarified with finality. 
In particular, no final deductions were made regarding the set of possible 
formulations of the boundary conditions at the point where the element 
of flexible construction meets the surface of the solid. There was also 
no formulation of the problem of a collision accompanied by rupture of 
the flexible structure. The solution of these two questions is given 
below. 

1. We will limit ourselves to examining the case when the material of the flexible 
structure is described by a linear law of elasticity in terms of conditional stresses while 
the collisions are such that the point of enoounter of the structure element and the body 
surface is displaced at "supersonic" velocity over the structure, i.e., at a velocity exceeding 
the velocity of elastic wave propagation. Since abrupt bending of the structure (Fig.1) occurs 
at the point of encounter, i.e., a "jump" change in the momentum vector of the structure 
element as well as of its state of stress and strain is observed, a local reaction of the 
impacting body surface will be developed at this point which is modeled by a concentrated 
force. Taking the above into account for an idealized consideration of the problem, when the 
flexible structure (string or membrane) is considered as a one- or two-dimensional deformable 
continuum, the mechanics of the events in a small neighbourhood of the "break" point of the 
structure is modelled by introducing a "wave of strong discontinuity", i.e., a scheme with a 
jump-like change in the mechanical parameters at this point is introduced. 

The Lagrange and Euler coordinates r and u, measured, respectively, along the strucutre 
from the point of its first contact with the impacting body and along the surface of this 
body, are introduced as the mechanical characteristics of the process in the one-dimensional 
case, as are the radial and azimuthal stresses Er,Oe (in the case of a string, one stress is 
along the filament Hr = ii,), corresponding to the strains 

Fig.1 
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